A Deeper Exploration of Natural Language Processing in Chinese

Yuxiang Pan
McGill University / Montreal, Canada

yuxiang.pan@mail.mcgill.ca

Abstract

We present a Python implementation of the Nat-
ural Language Processing (NLP) task of text
classification for text in Chinese, with a deeper
focus on feature engineering to include stroke
and radical information for individual Chinese
characters. For multi-class classification of text,
we utilized Multinomial Naive Bayes Classi-
fiers with identical hyperparameters to evalu-
ate the performance of models with different
feature selection strategies. The results of the
model for different feature levels are then com-
pared and the results are discussed.

The method of feature extraction concentrates
on individual features of characters as opposed
to a greater word or phrase level structure to
develop a text classification model.

1 Introduction

While languages with compositional orthography,
utilizing alphabets like Latin and Cyrillic, Chinese
script is composed of individual characters. Unlike
English whose smallest meaningful unit is derived
from the combination of characters/alphabets into
words, the semantic meaning of Chinese characters
stems from their pictograph origin.

Each Chinese character is maximally made up of
four radicals ({55 5P &) that contain individual
semantic meanings. For example, the character FH
(ming), usually denoting brightness, is composed
of H (i), meaning sun, and H (yu¢), meaning
moon. In this manner, some aspect of semantic
compositionality is present in Chinese orthography
that may provide additional information to machine
learning models in processing Chinese text.

Often, words from similar semantic categories have
the same radicals, such as the radical /K (mu),
meaning wood, which is found in many plant-
related words such as K (lin), meaning forest, and

Ava Gilmour
McGill University / Montreal, Canada

ava.gilmour@mail.mcgill.ca

Haiqi Zhou
McGill University / Montreal, Canada

haigi.zhou@mail.mcgill.ca

L (gud), meaning fruit.

F bree
k. forst

K plt

X

wﬂWL

pd

Figure 1: Example of radical X and its pictograph
relation with plants

Chinese characters are additionally composed of
individual strokes which are ordered by various
formation rules that remain consistent across pic-
tographs. Both characters and radicals can then
be broken down into a finite set of strokes in a
set particular order. For instance, the character /K,
which is also a radical, is written in four strokes:
one horizontal (called 1% (héng)), one vertical (‘&%
(shi)), one left-slanting downward stroke (Hif{ (pi&)),
and one right-slanting downward stroke (% (nd)).
As radicals are consistently characterized by these
strokes in the same order, stroke orderings can en-
code radicals which can in turn encode semantic
information.

Inspired by the article “Character-level Convolu-
tional Networks for Text Classification,” [ZZL15]
which explores the potential of applying CNNs to
conduct character-only text classification, we de-
cided to similarly decompose individual Chinese
characters to analyze the impact that further decom-
position of characters in feature engineering have
on the performance of a probabilistic linear classi-
fier. Our goal is to compare the performance of the
same model on the different granularity of features,
which are word level, character level, radical level,
and stroke level. From these results, we will deter-

mine if the finer levels of features are helpful on
their own.

1.1 Related Work

Prior research has found that using radicals and
strokes in word embeddings has led to better or
comparable performance to other methods of vec-
torization [ea20]. The experiment shows outstand-
ing performance in capturing local features and
outperforms state-of-the-art approaches. Similar
radical embedding has seen success in character
vectorization [eal5] where complex methods in-
cluding the use of stroke n-grams have improved
performance in certain tasks.

The use of stroke n-grams is due to the semantic
inconsistencies between the individual meaning of
radicals and the characters that they compose; de-
spite sometimes containing useful semantic infor-
mation, radicals are often unrelated to the meaning
of the character. For instance, the character #X
(song) is made up of the radicals £ (brother) and
K (lack of), which are far away from the mean-
ing of “song.” As such, stroke n-grams are useful
both as the sole embedding method, as presented
in [eal8a], and in tandem with radical embedding
[ea20], with the latter performing slightly better
than the former. Both methods outperform the state-
of-the-art embedding methods such as word2vec
and GloVe.

(Song) (Song)

T

o =T /o
A =] N
(Lack of) (Brother) (Lack of)

a Radical b Components

Figure 2: Example of radical decomposition

However, relying on additional information en-
coded by radicals is not always helpful in machine
learning tasks; in particular, radical embeddings are
not particularly effective in neural machine transla-
tion [eal 8b]. With this in mind, we wanted to inter-
rogate optimal methods for character embeddings
with various design combinations (radical embed-

ding, stroke n-grams, radical + stroke n-gram em-
bedding).

(Song) (Song) (Eye) (Day)
/o =T a EE—
X F R |7

(Lack of) (Brother) (Lack of) (Same strokes)
a Radical b Components c Strokes

Figure 3: Graph for the extended approach

2 Setup

For the model, we utilized sklearn’s Multinomial
Naive Bayes Classifier due to its prior consistent
performance in similar text classification tasks such
as those defined in Programming Assignment 1.

To develop mappings of individual characters to
stroke orders and radicals, we relied on existing
databases to extract these features. For stroke fea-
tures, the extracted feature set from [eal8a] was
used to map characters to the strokes that com-
pose them. This was performed by parsing char-
acter text data and replacing each character with
its corresponding strokes to develop character-level
n-grams from the corpus.

For extracting radicals, a union of 2 databases
is used: database.csv contains 11 thousand en-
tries and char2comp.txt contains 5 thousand !.
Note that the radicals extraction will be incomplete
since there are around 55 thousand Chinese charac-
ters and even without counting the repetition, both
databases sum up to 16 thousand. Thus, Out-Of-
Vocabulary (OOV) items will be assigned naively
with the token [UN K.

For the n-gram model, the Count Vectorizer was
passed the n for the n-gram to develop counts ac-
cordingly. Additionally, the model was tested with
analyzer=word and analyzer=char which deter-
mine the boundaries that determine the creation of
the n-grams by the vectorizer.

! partial implementation and databases
can be found in the following GitLab repo:
https://gitlab.cs.mcgill.ca/yuxiang.pan/comp-550-final-
project

2.1 Data

To test our character, stroke, and radical-based mod-
els, we used the Wikipedia Title Dataset which con-
tains a list of 12 categories for 160,000 titles of
Wikipedia articles. All of these titles are in simpli-
fied Chinese. The length of each title varies from
2 to 25 characters in length. In preprocessing this
data, we removed alphanumeric characters as well
as punctuation in order to isolate written Chinese
text data.

3 Results

The stroke-level model performed better than both
the radical and character-level models in the task
of text classification with an average accuracy of
53.4% on the training set and 50.3% on the test-
ing data. The model performed better with larger
n-grams, reaching a peak accuracy of 63% on the
training data and 57% on the test set when includ-
ing n-grams up to 15-grams from 3-grams. When
very large n-grams are created, however, the model
overfit onto the training data, as seen in the (25, 30)
n-gram range model. This increase in performance,
however, comes at a cost of a drastically longer run-
time as more n-grams are created and accounted
for by the model. For example, when trigrams to
15-grams were specified to the model, classification
of the entire dataset took 8 minutes and 47 seconds
while when trigrams to 5-grams were specified, the
model terminated after 58 seconds of computation.

On the other hand, the radical-level model yields
lower accuracy than the stroke-level, but with simi-
lar climb. It has an average accuracy of 32.4% for
the training data, and 14% for the testing data. The
peak performance happens in moderately large n-
gram models, which are 47% and 27% for training
and testing and performs poorly with large n-gram
models as observed in the last entry of Table 2.

The character-level classification is achieved by
first preprocessing our data with TFIDF vectorizer,
and then training a Multinomial Naive Bayes model
with the vectorized data. The result is quite simple,
hence there is no need for an individual table. From
observation, the training accuracy is around 94%
whereas the testing accuracy is only 22%.

Training Test
Analyzer nl n2 Accuracy Accuracy
(%) (%)
char 1 2 39 39
char 1 3 48 48
char 1 4 53 53
char 1 5 56 54
char 2 2 40 40
char 2 3 48 48
char 2 4 53 53
char 2 5 56 54
char 3 3 49 48
word 3 3 49 49
char 3 4 53 52
char 3 5 56 53
word 3 10 59 41
char 3 10 60 56
word 3 15 59 41
char 3 15 63 57
char 25 30 &4 41

Table 1: Results from the stroke-level n-gram model.

Training Test
Analyzer nl n2 Accuracy Accuracy

(%) (%)
char 1 2 25 20
char 1 3 28 21
char 1 4 30 24
char 1 5 31 25
char 2 2 27 20
char 2 3 32 22
char 2 4 35 23
char 2 5 36 23
char 3 3 35 19
char 3 4 37 22
char 3 5 38 22
char 3 10 45 26
char 3 15 47 27
char 25 30 8 3

Table 2: Results from the radical-level n-gram model.

https://github.com/frederick0329/Wikipedia-Title-Dataset

4 Analysis

The better performance of the stroke n-gram model
relative to the character-level model may be due to
the increase in feature data as larger n-grams are
required to capture the detail of more pictograph-
ically complicated characters. Because different
characters require fewer strokes than others, there
may be inconsistencies in the encoding of such
characters when stroke-level n-grams are utilized.
The universal increase in performance of the model
when larger n-grams were created hints that these
complicated characters are not well encoded by
smaller n-grams and semantic detail may be lost.

Additionally, due to the consistent and repetitive
presence of certain radicals in characters, these
smaller n-grams may be too general to accurately
predict categorization. The decomposition of char-
acter data into stroke data drastically increases the
length of the input data to the model, resulting
in extended computation time as well as memory
usage. While this decomposition may be more
computationally intensive on both the model and
the vectorizer, the increased information provided
by the stroke data is shown to increase the perfor-
mance of a base linear probabilistic model. Overall,
the use of stroke n-grams as input to a linear proba-
bilistic model resulted in the best accuracy of our
classifiers.

Considering the results from the radical-level n-
gram model, the change in accuracy with respect
to n-gram parameters follows the general trend of
stroke-level but with lower accuracy. A reason-
able hypothesis is that there exists ambiguity in
radical identification as radicals can have multi-
ple meanings, and the model in this experiment
is not designed to handle such ambiguity. Stroke-
level model triumphs because strokes are unique
and instead of handling ambiguous relations, they
completely disregard the consideration. However,
the trend differs with the large n-gram model as
the accuracy drops significantly. One can explain
such an observation by error propagation in radi-
cal identification. In other words, when a radical
n-gram is large, then uncertainty starts to pile up,
thus accuracy decreases as confidence drops.

The observation of the character-level model in-

dicates that the model is overfitting as training
data yields outstanding accuracy while new data
(testing) gives poor performance. Therefore, an
improvement would be to use any sort of gen-
eralization technique, such as cross-validation to
assess the model on multiple subsets of the data
to increase overall robustness. Since the Chinese
database is relatively hard to find, one can also use
data augmentation to manually increase data size.

5 Conclusion

We have presented an analysis of text classifica-
tion of Chinese language data focusing on the ef-
fects that different levels of feature granularity
had on model performance. Our work presents
information as to the efficacy of radical, charac-
ter, and stroke-level feature engineering and how
such strategies affect the performance of a linear
probabilistic model.

The approach in this paper is particularly relevant
in a complex character-based language like Chi-
nese. Without such a simplification, NLP in Chi-
nese needs to deal with thousands of unique char-
acters, which entails catastrophic computational
resources as the baseline complexity of NLP algo-
rithms is already large. Working in a finer scope,
one only needs to deal with hundreds of radicals
or dozens of strokes, which is a significant reduc-
tion. If this decomposition is applied to Chinese
text, NLP strategies that may work for alphabet-
based languages may be applied to character-based
languages as well.

However, due to the low performance of the stroke
n-gram-based model and the radical-based model,
it is evident that these features are insufficient in
alone characterizing text and should ideally be
combined to develop a more robust classification
model.

5.1 Future Work

While we mainly concentrated on the feature engi-
neering portion of developing a machine learning
model as opposed to tweaking the model itself, ex-
perimentation with different kinds of models would
be useful in determining the efficacy of encoding
text with different levels of detail. For example,
a CNN with multiple channels could utilize infor-

mation from different levels of detail (i.e. stroke,
radical, and character). This might assist in devel-
oping more detailed embeddings of individual char-
acters. Further experimentation with linear models
or LSTMs could also illuminate potential avenues
of further development when utilizing radical and
stroke information for characters.

5.2 Contribution

Gilmour implemented the model and stroke-level
tasks and set up the default training code, Pan per-
formed radicals-level tasks and the majority of the
report with its formalization in I&TEX, and Zhou
did character-level tasks and database retrieval with
preprocessing.

References

[eal5] Shi et al. Radical embedding: Delving deeper
to chinese radicals. Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), 2015.

[eal8a] Cao et al. cw2vec: Learning chinese word em-
beddings with stroke n-gram information. Thirty-
Second AAAI Conference on Artificial Intelligence,
2018.

[eal8b] Tan et al. Radical-enhanced sequence to se-
quence model for chinese-english neural machine
translation. LIGN167: Deep Learning for Natural
Language Processing, 2018.

[ea20] Wang et al. Radical and stroke-enhanced chinese
word embeddings based on neural networks. Neural
Process Lett 52, 1109-1121, 2020.

[ZZ1.15] Xiang Zhang, Junbo Zhao, and Yann LeCun.
Character-level convolutional networks for text classi-
fication. Advances in Neural Information Processing
Systems 28, 2015.

