
Normalization by Evaluation for Simple Types: Formalization

in Coq and Overview

Yuxiang Pan

December 18, 2023

Abstract

Understanding a logical expression can sometimes be cumbersome. An expression can have a
simple semantic while is represented in a complex syntax structure, or two expressions with the
same semantic can be represented by different forms. These examples make the understanding
of logical expression unmanageable. Presenting Normalization by Evaluation (NbE), a powerful
normalization concept in the realm of type theory and functional programming that aims to
establish a consistent normal form of representing typable expressions. This technique integrates
normalization and evaluation into a single process and is applicable in many instances such as
compiler design, providing a means to normalize expressions and produce efficient code.

1 Introduction

The principle of NbE is to bridge the gap between syntactic structures and their corresponding se-
mantic interpretations, thereby facilitating the analysis and manipulation of programs within a formal
framework. In the case of simple types, which consist of basic data types (natural numbers in this
paper) and function types, NbE serves as a method for systematically reducing complex expressions
to their simplest form. The process begins with the representation of types and terms within a formal
system, for instance, the lambda calculus. Types are used to classify expressions, and terms denote the
computational content. However, expressions may exhibit redundancies or non-essential details that do
not affect their fundamental meaning, which entails inconsistent representations of the same semantic.
As a way out, NbE simplifies logical constructs by evaluating their structure into a consistent semantic
form.

The ”evaluation” part of NbE involves interpreting terms in a computational model. This model can
be thought of as a machine that simulates the behavior of the programming language. By executing
the terms in this model, NbE reduces expressions to their normal form by performing reduction rules
on their operational semantics. Simultaneously, the ”normalization” part reads back the evaluated
expressions into a canonical or simplified representation that captures their essential meaning. The
result is a normalized expression that retains the same meaning as the original but in a concise and
consistent form. Such a concept of conversion is introduced by Martin-Löf [ML75].

In simple types, NbE enables the reduction of higher-order functions and applications to their simplest
forms. This simplification not only aids in understanding and reasoning about programs but also
provides a foundation for optimizing code and ensuring that equivalent expressions are treated as
such.

In terms of real-life application, NbE has found use in various areas of computer science, including
proof assistants, functional programming languages, and type theory. By connecting the logical and
computational aspects of a programming language, NbE contributes to the development of more robust
and expressive systems, enhancing the ability to reason about programs formally and systematically.

1

1.1 Related Work

This paper follows closely the work of Andreas Abel [Abe13] for the simple types. However, note that
there are countless other design choices for normalization and for NbE in general. For similar work,
Abel [ea07] and Wieczorek [ea18] introduce NbE for Martin-Lof type theory with beta eta equality,
which features dependent types instead of simple types. Dependent types are more real-life applicable
than the simple types present in this paper, however, the former is more cumbersome to mechanize
during the partial equivalence relation. In addition, Altenkirch [ea16] and Cubric [ea98] take another
approach for dependent types NbE by using the Presheaf categories and Yoneda embedding, which
focus on capturing context and environment.

Furthermore, Abel and Pientka [AA10] discuss explicit substitution approaches in the normalization
with the dependent types framework. This project also chooses explicit substitution since it forces a
direct manipulation of substitution in the mechanization, provides a more controlled way of represent-
ing the concept, and generally makes the lemmas more compact. The above paper [AA10] explores
explicit substitution more deeply by analyzing the vanilla explicit substitution with lazy and single-pass
approaches, which definitely are feasible extensions for a future project.

As for more distant extension, Berger [ea91b] presents a version of normalization that avoids explicit
beta eta reductions by inverting the evaluation function for lambdas, and Altenkirch [ea95] constructs
a proof of Berger’s work in category theory. To sum up, the relation between NbE for the simple types
and, not limited to, the mentioned others is that one can think of the former as the baseline version
of the concept that can be further extended to more complicated systems. The mechanization in this
paper builds on top of the baseline with the addition of de Bruijn indices for variables and explicit
substitution.

The advantage of such variable representation is to avoid renaming problems, thus making substitution
easier to handle. One can also use de Bruijn levels to represent variables. The difference is when using
indices, one needs to shift the indices of unbound variables; while with levels, one needs to shift the
levels of bound variables, which causes a duality. However, in the context of this paper, bound variables
never appear as the work is around closure. Since there is nothing to shift, indices are preferred.

2 Simple Types

The mechanization of simple types in this paper consists of Gödel’s System T [God58], de Bruijn indices
for variables, natural numbers, function abstraction and application, primitive recursion, and explicit
substitution [ea91a]. Primitive recursion installs an intuitive and consistent way to define functions
over natural numbers, which facilitates the reasoning about the properties of these functions. Explicit
substitution 2.1 provides a clear representation of the substitution process and simplifies the overall
implementation. The Gödel’s System T is defined as follows:

S, T ∈ tp Types.

N ∈ tp
type of natural numbers

S ∈ tp T ∈ tp

S → T ∈ tp
function type

Γ ∈ context Typing contexts.

() ∈ context
empty context

Γ ∈ context x /∈ Γ

(Γ, x : T) ∈ context
context extension

c ∈ CstT Constants of type T.

zero : N
zero

succ : N → N
successor function

recc : T → (N → T → T)→ N → T
primitive recursion into type T

2

r, s, t ∈ tmT
Γ Well-typed terms.

c : T

Γ ⊢ c : T
constant

(x : T) ∈ Γ

Γ ⊢ x : T
variable

Γ, x : S ⊢ t : T

Γ ⊢ λxt : S → T
function abstraction

Γ ⊢ r : S → T Γ ⊢ s : S

Γ ⊢ rs : T
function application

The terms t ∈ tm are given as follows:

tm ∋ r, s, t ::= xi | zero | succ(t) | λt | r s | recc(tz, ts, tn)

Where xi represents the ith variable, zero and succ(t) are natural numbers, λt is abstracting the 0th
variable in t, r s is applying r to s, and recc(tz, ts, tn) is primitive recursion.

2.1 Explicit Substitution

Substitution is an indispensable component in functional programming. Instead of using the classical
representation of substitution as an independent operation, the mechanization in this paper installs
substitution explicitly as a term in the form of closure.

By following Abadi’s definition [ea91a], substitution extends the term definition with substitution
application, and the grammar extends as follows:

tm ∋ r, s, t ::= . . . | t σ

subs ∋ σ, τ ::= id | ↑ | στ | (σ, s)

Where t σ represents substitution application, id is the identity substitution, ↑ is index shift or weak-
ening which increases all de Bruijn indices by 1 and can be useful in, for example, variable lookup
or eta-expansion. στ is substitution composition that offers an orderly way of performing multiple
substitutions, and (σ, s) is substitution extension that extends σ with a term s. Typing rules extend
as well:

Γ |= t : T ∆ |= σ : Γ

∆ |= t σ : T

Γ |= id : T Γ, S |= ↑: Γ
Γ1 |= τ : Γ2 Γ2 |= σ : Γ3

Γ1 |= στ : Γ3

Γ |= σ : ∆ Γ |= s : S

Γ |= (σ, s) : ∆, S

2.2 Lemmas

This paper chooses to mechanize term equality with extensionality to prove term reflexivity, and
presupposition as a way to show the correctness of the lambda calculus so far.

Γ |= t = t′ : T term equality

Γ |= σ = σ′ : ∆ substitution equality

Together with extensionality rules.

Γ, S ⊢ t = t′ : T

Γ ⊢ λt = λt′ : S → T
weak function extensionality

Γ ⊢ t : S → T

Γ ⊢ t = λ.(t ↑)x0 : S → T
function extensionality

3

Γ ⊢ σ : ∆ ∆, S ⊢ t : T

Γ ⊢ (λt)σ = λ.t(σ ↑, x0) : S → T
substitution in lambda

Proving reflexivity strengthens the logical consistency of the system, while presupposition supports
valid reasoning, both promote the system’s correctness. In the context of logical systems, there is
plenty of freedom in choosing lemmas to prove the correctness, such as the law of excluded middle,
contrapositive, and distributive properties. In this paper, it is equally feasible to prove symmetry and
transitivity in definitional equality.

Reflexivity:
t ∈ tmΓ

T ←→ Γ |= t = t : T

σ ∈ subsΓ∆ ←→ Γ |= σ = σ : ∆

Presupposition:
Γ |= t = s : T ←→ t ∈ tmΓ

T ∧ s ∈ tmΓ
T

Γ |= σ = τ : ∆←→ σ ∈ subsΓ∆ ∧ τ ∈ subsΓ∆

In the mechanization, both lemmas are trivial to prove as they only require applying equality rules and
unfolding definitions. However, presupposition may cause some slight problems as Coq’s automation
tactic is powerful but incomplete, hence it needs manual guidance. Another observation is that with the
addition of explicit substitution and extensionality, the rules become messy and the overall readability
is reduced, which will cause some mild headaches in choosing the right rule.

3 Normalization

In the context of NbE, normalization refers to rewriting or simplifying expressions according to a
transformation function into a domain. The goal is to reach a form where no further reductions are
possible. This process ensures that expressions are consistent and avoids issues such as non-termination
or divergence.

3.1 Domain Model

The domain model consists of operational semantic values for logical expressions, which form an
applicative structure. This is essential to NbE since both evaluation and readback functions depend
on the domain. Then, normal and neutral terms are defined. A term is in its normal form if no further
reduction is possible according to the typing rules of the system. A neutral form is a specific kind of
normal form, however, it contains subterms that can not be fully reduced. In other words, a term is
in its neutral form when its computation is only partially completed. Their grammar is as follows:

nf ∋ v ::= u | zero | succ(v) | λv

ne ∋ u ::= xi | u v | recc(vz, vs, u)

Then, normal (⇐) terms for system T are given by the following rules:

Γ ⊢ u⇒ N

Γ ⊢ u⇐ N Γ ⊢ zero⇐ N

Γ ⊢ v ⇐ N

Γ ⊢ succ(v)⇐ N

Γ, x : S ⊢ v ⇐ T

Γ ⊢ λxv ⇐ S → T

And for neutral (⇒) terms:

(x : T) ∈ Γ

Γ ⊢ x⇒ T

Γ ⊢ u⇐ S ← T Γ ⊢ v ⇐ S

Γ ⊢ u v ⇒ T

Γ ⊢ vs ⇐ T Γ ⊢ vs ⇐ N → T → T Γ ⊢ u⇒ N

Γ ⊢ recc(vs, vs, u)⇒ T

4

Now, to define the domain model D, an applicative structure is required to correctly represent neutrals.
Hence, D is encoded as follows:

D ∋ a, b ::= zero | succ(a) | (λt)ρ | updtT (e)

DNf ∋ d ::= downT (a)

DNe ∋ e ::= xk | e d | recc(dz, ds, e)

DNf represents the functional closure of reifying a domain value to a normal value, and DNe consists of
neutrals. As for the evaluation environment, ρ is defined as ρ ∈ Env = N → D, and can be extended
(ρ, d)(n) using pattern matching on the natural number n as (ρ, d)(0) = d and (ρ, d)(S n′) = ρ(n′). On
a side note, in mechanization the environment may cause confusion in algorithm encoding since Env
is the syntactic sugar for N → D instead of being an independent object, then a returning object can
be a Env value as well as a function value of N → D and both cases are valid as they do type-check.

3.2 Evaluation Function

The evaluation function has the goal of interpreting logical expressions to obtain their semantic meaning
and transform them into a domain value. It also performs all beta reductions. As for the implemen-
tation, the evaluation function for terms is mutually inductive with function application and extends
to recursion and substitution. Function application consists of the beta-reduction case and a general
neutral case. Recursion performs the base case for the domain value zero and the step case for the
successor. Notice that the evaluation function is non-compositional since in an environment ρ if r is
evaluated to a domain value f , s to a, and f applied to a gives b, then the evaluation of r applied to s
yields b. The evaluation of term t in the environment ρ yields domain value d is denoted by JtK(ρ)↘ d,
and the rules are:

JxiK(ρ)↘ ρ(i) JzeroK(ρ)↘ zero

JtK(ρ)↘ d

Jsucc(t)K(ρ)↘ succ(d)

JλtK(ρ)↘ (λt)ρ

JrK(ρ)↘ f JsK(ρ)↘ a f · a↘ b

Jr sK(ρ)↘ b

JtzK(ρ)↘ dz JtsK(ρ)↘ ds JtnK(ρ)↘ dn recc(dz, ds, dn)↘ d

Jrecc(tz, ts, tn)K(ρ)↘ d

As for mutual inductive evaluation of function application, and recursion:

JtK(ρ, a)↘ b

(λt)ρ · a↘ b e · d↘ e d

recc(dz, ds, zero)↘ dz

recc(dz, ds, dn)↘ a ds · dn ↘ f f · a↘ b

recc(dz, ds, succ(dn))↘ b

Lastly, the rules of substitution are:

JσK(ρ)↘ ρ′ JtK(ρ′)↘ a

Jt σK(ρ)↘ a

JidK(ρ)↘ ρ J↑K(ρ, a)↘ ρ

JτK(ρ)↘ ρ′ JσK(ρ′)↘ ρ′′

JστK(ρ)↘ ρ′′
JσK(ρ)↘ ρ′ JsK(ρ)↘ a

J(σ, s)K(ρ)↘ (ρ′, a)

An important detail in the mechanization of the evaluation function is to apply the correct environment
extension and type transformation while dealing with function application and substitution. One needs
to understand the meaning behind the evaluation result of these cases, instead of aiming for the type-
check. This argument is equally applicable to the mechanization of the readback function, which needs
correct domain transformation.

5

3.3 Readback Function

The readback function converts the resulting domain values from the evaluation function into a normal
form and restores all beta-reductions by performing eta-expansions, thus it will be mutually inductive
on the normal and neutral forms, denoted by Rnf

n and Rne
n . Since reading back a closure suggests the

evaluation of the function body where not necessarily all cases are defined, the readback function is
partial. The rules for Rnf

n are given as follows:

Rnf
n zero↘ zero

Rnf
n d↘ v

Rnf
n succ(d)↘ succ(v)

JtK(ρ, xn)↘ b Rnf
n b↘ v

Rnf
n (λt)ρ↘ λv

Rne
n e↘ u

Rnf
n e↘ u

Similarly for Rne
n :

Rne
n xk ↘ v(n−k−1)

Rne
n e↘ u Rnf

n d↘ v

Rne
n e d↘ u v

Rnf
n dz ↘ vz Rnf

n ds ↘ vs Rne
n e↘ u

Rne
n recc(dz, ds, e)↘ recc(vz, vs, u)

3.4 Lemmas

To ensure the correctness of the evaluation function, a lemma is required to demonstrate that the eval-
uation function outputs the same domain value for the same term evaluated in the same environment.
The lemma will be mutually inductive with function application, recursion, and substitution.

∀(a, a′ : D). (JtK(ρ)↘ a) ∧ (JtK(ρ)↘ a′)←→ a = a′

∀(b, b′ : D). (f · a↘ b) ∧ (f · a↘ b′)←→ b = b′

∀(d, d′ : D). (recc(dz, ds, dn)↘ d) ∧ (recc(dz, ds, dn)↘ d′)←→ d = d′

∀(ρ, ρ′ : Env). (JσK(ρ)↘ ρ′) ∧ (JσK(ρ)↘ ρ′′)←→ ρ′ = ρ′′

Similarly, for the readback function, the normalized value must be the same for the same inputs to
satisfy the correctness. The lemma will be mutually inductive with normal and neutral values.

∀(v, v′ : nf). (Rnf
n d↘ v) ∧ (Rnf

n d↘ v′)←→ v = v′

∀(u, u′ : ne). (Rne
n d↘ u) ∧ (Rne

n d↘ u′)←→ u = u′

4 Completeness

Completeness is the property that NbE covers all terms, which is important as it provides confidence
in the correctness of the normalization algorithm and in its ability to handle all possible terms in the
language. To establish completeness, the demonstration that all terms can be normalized is required.
As an outline, a partial equivalence relation, which is a symmetric and transitive relation, is needed to
model extensional function equality. Then, proving realizability shows the convertibility of an abstract
construction to a concrete computation. Fundamental theorems are essential as they ensure properties
such as termination and uniqueness.

4.1 Partial Equivalence Relation

Extensional function equality means that two functions are considered equal if, for all possible inputs,
they produce the same output. In the context of this paper, it can be modeled using a partial
equivalence relation (PER). A PER is an equivalence relation but not defined for all pairs of elements,

6

which is desired to apply on closure. Consequently, PERs are often modeled using groupoids [Abe09]
since by definition, the latter is an algebraic structure that consists of a non-empty set with a binary
partial function. Moreover, groupoids are isomorphic with PER in operations, where the existence
of inverse corresponds to symmetry, and the associativity of morphism composition corresponds to
transitivity. Ultimately, PER corresponds to the subgroupoids of D × D. An immediate drawback of
formalizing PER in Coq is that the process can not be done directly as explained in section 5.

4.2 Realizability

Realizability proves that the read-back set of values is well-contained between the spaces of the read-
back normal form and read-back neutral form, which are defined as Top (⊤) and Bot (⊥) respectively.
Consider the PER model, Top and Bot are defined as ⊤ ⊆ Dnf× Dnf and ⊥ ⊆ Dne× Dne. Together
with read back function, the rules are as follows:

d = d′ ∈ ⊤ ←→ ∀n.Rnf
n d = Rnf

n d′ ∈ nf

e = e′ ∈ ⊥ ←→ ∀n.Rne
n e = Rne

n e′ ∈ ne

Then, the definition of a syntactic type T that realizes a PER model A is installed, denoted by
T ⊆ A ⊆ T . As a consequence, the equivalence relation is given by the conjunction of the following:

∀(e, e′ : DNe). e = e′ ∈ ⊥ → ↑T e =↑T e′ ∈ T

∀(a, a′ : D). a = a′ ∈ T → ↓T a =↓T a′ ∈ ⊤

Finally, using the equivalence relation, one can directly prove the realizability for type T of the algo-
rithm.

∀T. ⊥ ⊆ JT K ⊆ ⊤

The main difficulty in proving realizability is in the modeling of equivalence relations in the function
type. The process needs to establish deep-level equivalence starting with the high-level interpretation
of the semantics, then into the domain values equivalence, and finally equivalence in the application
evaluation. There are no obvious constructors to model such a deep-level equivalence, hence one way
of encoding is by using nested inductive definitions.

5 Mechanization

The biggest challenges in creating a mechanization of NbE for the simple types in Coq lay in formal-
izing the concept, encoding the algorithm, and proving properties such as correctness, soundness, and
completeness. To formalize definitions and rules, one needs to fully understand the theory on paper
and to adequately apply Coq constructors. The mechanization of the PER can pose problems since
Coq is primarily designed to work with total functions, which is a limitation in the expressiveness of
the language and thus requires some workaround and compromise. Such a problem can be relatively
easy to deal with in simple types but will become significant in dependent types. One solution is to
use the option type to handle partiality, however, for the sake of readability, this approach is shelved
and PER is modeled using inductive constructors and lemmas.

Moreover, during theorem proving, Coq shows to not be smart in its scope. The proof assistant
has a strict termination checking in proofs, thus tactics must be applied on structurally decreasing
arguments. On the good side, it guarantees consistency, but it also limits expressiveness. In many
cases of this mechanization, Coq does not allow a theoretically correct tactic because of the scope
problem when the tactic is called, hence one must rearrange the order of tactics.

7

6 Conclusion and Future Work

Normalization by evaluation for the simple types is a powerful normalization technique that provides a
consistent normal form for all typable terms in the system of simple types. However, this mechanization
is incomplete, thus for the sake of the project’s completeness, proof of completeness and soundness
properties should be mechanized as future work. On the other hand, considering its usefulness, the NbE
for the simple types lays the foundations for countless possible extensions to more complex systems or
to systems that are more suitable for real-life applications as explained in section 1.1. As a reasonable
example of a future project, since real-life machines usually assign a type to a term instead of having
a fixed type, by adding the feature where the type of an expression can depend on other terms, simple
types will be extended into dependent types, which can be further mechanized. Such a typing system
is particularly useful in, for instance, software development as it can provide concurrency, parallelism,
and overall more expressive data structures.

8

References

[AA10] Brigitte Pientka Andreas Abel. Explicit substitutions for contextual type theory. EPTCS 34,
pages 5–20, 2010.

[Abe09] Andreas Abel. Typed applicative structures and normalization by evaluation for system f.
Computer Science Logic, 23rd international Workshop, CSL 2009, 18th Annual Conference
of the EACSL, Coimbra, Portugal, September 7-11, 2009. Proceedings,, pages 40–54, 2009.

[Abe13] Andreas Abel. Normalization by evaluation dependent types and impredicativity. Fakultät
für Mathematik, Informatik, und Statistik, Ludwig-Maximilians-Universität München, 2013.

[ea91a] M Abadi et al. Explicit substitutions. Journal of Functional Programming, 1:375–416, 1991.

[ea91b] Ulrich Berger et al. An inverse of the evaluation functional for typed lambda -calculus.
Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science, pages 203–211,
1991.

[ea95] Thorsten Altenkirch et al. Categorical reconstruction of a reduction free normalization proof*.
International Conference on Category Theory and Computer Science CTCS 1995, pages 182–
199, 1995.

[ea98] Djordje Cubric et al. Normalization and the yoneda embedding. Mathematical Structures in
Computer Science, Volume 8, Issue 2, pages 153–192, 1998.

[ea07] Andreas Abel et al. Normalization by evaluation for martin-löf type theory with typed equality
judgements. 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pages
3–12, 2007.

[ea16] Thorsten Altenkirch et al. Normalisation by evaluation for dependent types*. 1st International
Conference on Formal Structures for Computation and Deduction (FSCD 2016), pages 6:1–
6:16, 2016.

[ea18] Pawel Wieczorek et al. A coq formalization of normalization by evaluation for martin-löf type
theory. Proceedings of the 7th ACM, pages 266–279, 2018.

[God58] K. Godel. Uber eine bisher noch nicht benutzte erweiterung des niten standpunktes. Dialec-
tica, pages 280–287, 1958.

[ML75] Per Martin-Lof. An intuitionistic theory of types: Predicative part. Studies in Logic and the
Foundations of Mathematics, Volume 80, pages 73–118, 1975.

9

	Introduction
	Related Work

	Simple Types
	Explicit Substitution
	Lemmas

	Normalization
	Domain Model
	Evaluation Function
	Readback Function
	Lemmas

	Completeness
	Partial Equivalence Relation
	Realizability

	Mechanization
	Conclusion and Future Work

